Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Plants (Basel) ; 11(4)2022 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-35214818

RESUMO

Zygophyllum dumosum is a dominant shrub in the Negev Desert whose survival is accomplished by multiple mechanisms including abscission of leaflets to reduce whole plant transpiration while leaving the fleshy, wax-covered petioles alive but dormant during the dry season. Petioles that can survive for two full growing seasons maintain cell component integrity and resume metabolic activity at the beginning of the winter. This remarkable survival prompted us to investigate endophytic bacteria colonizing the internal tissues of the petiole and assess their role in stress tolerance. Twenty-one distinct endophytes were isolated by culturing from surface-sterile petioles and identified by sequencing of the 16S rDNA. Sequence alignments and the phylogenetic tree clustered the isolated endophytes into two phyla, Firmicutes and Actinobacteria. Most isolated endophytes displayed a relatively slow growth on nutrient agar, which was accelerated by adding petiole extracts. Metabolic analysis of selected endophytes showed several common metabolites whose level is affected by petiole extract in a species-dependent manner including phosphoric acid, pyroglutamic acid, and glutamic acid. Other metabolites appear to be endophyte-specific metabolites, such as proline and trehalose, which were implicated in stress tolerance. These results demonstrate the existence of multiple endophytic bacteria colonizing Z. dumosum petioles with the potential role in maintaining cell integrity and functionality via synthesis of multiple beneficial metabolites that mitigate stress and contribute to stress tolerance.

2.
Plants (Basel) ; 10(8)2021 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-34451672

RESUMO

In the face of climate change and the predicted increase in the frequency and severity of abiotic stresses (e.g., hot spell, salinity), we sought to investigate the effect of salinity (S), short episodes of high temperature (HS) and combination of salinity and high temperature (SHS), at the reproductive phase, on yield with a special focus on the properties of dead pericarps of Brassica juncea. Three interval exposures to HS resulted in massive seed abortion, and seeds from salt-treated plants germinated poorly. Germination rate and final germination of B. juncea seeds were slightly reduced in the presence of salt and SHS pericarp extracts. All pericarp extracts completely inhibited seed germination of tomato and Arabidopsis, but removal of pericarp extracts almost fully restored seed germination. Heat and salinity profoundly affected the accumulation of phytohormones in dead pericarps. Combined stresses highly reduced IAA and ABA levels compared with salt, and enhanced the accumulation of GA1, but abolished the positive effect of salt on the accumulation of GA4, JA and SA. Interestingly, pericarp extracts displayed priming activity and significantly affected seedling performance in a manner dependent on the species and on the origin of the pericarp. While control pericarps improved and reduced the seedlings' performance of autologous and heterologous species, respectively, pericarps from salt-treated plants were harmless or improved heterologous seedling performance. Thus, the strategy employed by the germinating seed for securing resources is set up, at least partly, by the mother plant in conjunction with the maternal environment whose components are stored in the dead maternal organs enclosing the embryo.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...